资料首页 教学论文 计划总结 说课评课 案例反思 班队资料 事迹材料 会议演讲 职称述职 学生园地 课件技术 语文说课 数学说课


位置: 莲山课件 >> 资料  >> 高三数学说课稿 >> 正文

《正切函数的定义、图像与性质》http://web.5ykj.com稿

(编辑:佚名 日期:2016/9/21)

《正切函数的定义、图像与性质》说课稿

一、教材分析(说教材)
1.教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容.它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题.
2.教学目标
知识与技能:(1)能借助单位圆理解任意角的正切函数的定义.(2)能画出y=tanx的图像.(3)掌握正切线的基本性质.(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题.
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神. 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣.
3.重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象.对于正切函数来说由于定义域的不连续性导致了图像的间断性.所以要正确探索出图像和性质.处理方法是类比正余弦函数的图像和性质的研究.
难点:画正切函数的图像.依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图.在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像.
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力.因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务.教师在重难点的地方给予提示和帮助即可.
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述.所以对正切函数仍然采用了这样的方法.先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质.这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面.
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标.我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间.教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法.在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充.
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像.
(二)自主探究:
1.正切函数的定义
请学生课前自主学习课本35页7.1的内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示.
2.正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评.以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像.
3.正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质.
(三)例题展示
例1  求函数 《正切函数的定义、图像与性质》说课稿 的定义域.
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解.
例2  利用正切函数图像求满足条件的角的范围.
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题.
(四)课堂小结:学生自己先总结然后老师补充.
(五)思考问题:
1.正切函数是整个定义域上的增函数吗?为什么?
2.正切函数会不会在某一区间内是减函数?为什么?
五、作业布置
完成相应的课后作业.
六、设计说明
1.板书说明:侧黑板留给学生展示,前黑板用来展示多媒体.
2.时间分配:(一) 五分钟(二)六分钟1.十分钟2.十二分钟3.五分钟
 
(三)五分钟(四)一分钟(五)一分钟



相关资料:

没有相关资料

上一篇:
  • 上一篇资料:

  • 下一篇:
  • 下一篇资料: