资料首页 教学论文 计划总结 说课评课 案例反思 班队资料 事迹材料 会议演讲 职称述职 学生园地 课件技术 语文说课 数学说课


位置: 莲山课件 >> 资料  >> 高一数学说课稿 >> 正文

《对数函数的图像与性质》http://web.5ykj.com稿

(编辑:佚名 日期:2017/5/2)

《对数函数的图像与性质》说课稿

今天我说课的内容是《对数函数的图像与性质》
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识目标:掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3) 情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的图像与性质.
难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化.
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透数形结合、分类讨论等数学思想方法.
(4)用探究性教学、提问式教学和分层教学
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1) 探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
归纳得出对数函数的图像与性质。
(2) 主动式学习:学生自己归纳得出对数函数的图像与性质。
四、说教程
1、温故知新
我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。
设计意图:这与本节内容有密切关系,有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生分析问题的能力.
2、探求新知
研究对数函数的图像与性质.关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质.
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习.
3、课堂研究,巩固应用
例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解.
例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况.
例3 解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.
4、巩固练习
使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握.从两方面进行小结:
(1) 掌握对数函数的图像与性质,体会数形结合的思想方法;
(2) 会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的
解法,体会分类讨论的思想方法.
6、作业:p97习题3,4,5
         选做题 6题



相关资料:

没有相关资料

上一篇:
  • 上一篇资料:

  • 下一篇:
  • 下一篇资料: